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THEORY OF SORPTION CHROMATOGRAPHY

1I. NUMERICAL CALCULATIONS

HANS VINK

Institute of Physical Chemistry, University of Uppsala (Sweden)
(Received January 6th, 1966)

SYMBOLS
J = solute concentration in mobile phase
h == solute concentration in stationary phase
c = concentration of sorbent
ks = rate constant for sorption
ko = rate constant for desorption
v = translational velocity of mobile phase
D,, D, = diffusion coefficients in mobile and stationary phase respectively
V., Vs = volumes per interphase area of mobile and stationary phase respectively
Jms 4 = matrix element representing f
hmy; ;4 = matrix element representing 4
Ay == 7th moment of the concentration distribution
w = mean of the concentration distribution
o = variance of the concentration distribution
M = mode of the concentration distribution
T = duration of equilibration step
Y = partition coefficient
v = peak velocity
D = spreading coefficient
w = velocity of concentration front in frontal analysis
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INTRODUCTION

The theoretical treatment of sorption chromatography in the preceding article!
has been supplemented by numerical calculations performed on a digital computer.
As the basis of the calculations the following equations were used:
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These equations were solved by a finite difference approximation method,
leading to eqns. (40)—(42) in the Appendix. The numerical treatment of the problem
followed the general outlines of the procedure in partition chromatography?:3. The
results were obtained in the form of the matrixes (f™;3) and (4™;;) representing con-
centration distributions in the mobile and stationary phases respectively of the
chromatographic column. The data were abstracted from the computor in the form
of a few selected columns of a matrix, representing the concentration distribution at
different times. The zeroth, first and second moment with respect to the origin, with
the cell width as unit length, were also calculated for every colummn. For the jth
column they are defined as follows:

Ao = ? tis A (3)
Ay = ; i fy ‘ (4)
Ag = ? 12 fig (5)

with éorresponding definitions for the /4-matrix.
For a characterization of the concentration distributions the reduced moments,
the mean u and the variance u, were used. They are defined as follows:

Aq

ro= (6)
Az

'ug = _;1-(-) —-‘Ltz (7)

Inaddition the mode M, defined as the location of the maximum of the smoothed
distribution curve, was also determined.
The primary results of the calculations are in the following given in terms of the

parameters 4o, M, u and wu,.
METHOD OF CALCULATION

In the present calculations the characteristic parameters of column operation
were varied in order to determine their effect on the chromatographic process.

From the form of eqns. (1) and (2) it follows that not all parameters need be
varied independently. The following transformations are seen to leave the equations
unchanged:

(c. _I‘jl) - (ao, -I-j-l | | | (8)
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¢
(¢, af, k1) - (Z’ f, akl) (9)
. (at, k1, ke, D1, v) - (2, aky, aks, aD;, av) (10)

~where a is an arbitrary constant. _

Each of these transformations makes it possible to change the value of one of
the parameters via corresponding changes in some other parameters. In the calcula-
tions therefore only the parameters ¢, D,, k; and %k, were varied, the others being
kept constant and, when not otherwise stated, had the values:

v = 0.01 (cm sec—1) _ (11)
V1 = o0.004 (cm) ' | (12)
} = 100 ' | | - (13)
T = 5 (sec) . (14)

‘The value of V; was chosen to represent a column filling consisting of tightly
packed spherical beads with a radius of approximately 0.01 cm. The value of 7 may be
fixed arbitrarily, but is related to the values of other variables by formula (10).
(D,, &y, and %, enter the calculations in form of the combined parameters & = 2 D, /712,
t/m %k, and v/m k,). The value in (14) may be used for convenience, as 1t provides -

realistic operational conditions for the column. It gives a cell width 7v = 0.05 cm.
' All the matrixes were of the order # = 200 and in all cases the value m =5
- was used.
The calculations were carried out with the following initial conditions:

‘ 100 for 4 = 1

0 — -

o { o for i = 2, ., 200 (x5)

1ooforj =1,....,% '
0y = (16
1011 { oforj=mn 4 1, ., 200 (6)
: 100 for § = 1, cam— 1

m —

f™os { o for §j = m, «» 109 ()
h”‘-w — ofori=1,.. .+, 200 ' ' ‘ l (18) .

‘ In the case of isolated peaks in general the value # = 5 was used, though for
- matnxes 22, 24, 25 and 26 the value of # was 2, 10, 15 and 20, respectively. In the
- -case, of frontal analysis, for matrixes 21 and 22, the value of # was 200.

' ‘The values of the characteristic parameters for the different matrixes are hsted
“in Table I, and the primary results of the calculations are given in Tables IT and IV, .
. In Table II, the matrixes may be grouped together accordlng to the followmg ‘

~'scheme: In 1, 2 and 3 the longltudmal diffusion coefficient is varied; in 4, 5, 2 and 6 the .

; equ111br1um constant is varied;in 7, 8, 9, 10,2 and 11 the concentration of the sorbent

- is varied;in 12, I3, 14, 2, 13 and 16 the reaction rate is varled and i in1y7, 18, 2 and 19 @ -
the feed concentratlon 1s varled Fmally, the m’ttnxes 20 and 21 represent frontal: e
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TABLE 1
VALUES OF CHARACTERISTIC PARAMETERS
Matrix c & ¥lm kg T/ ey
No.
1 100 0.4 o 0.005 0.05
2 100 0.4 o.1 0.005 0.05
3 100 0.4 0.2 0.0035 0.05
4 100 0.4 o.1 0.0035 0.001
5 100 0.4 0.1 0.005 0.005
6 100 0.4 o.I 0.005 0.25
7 100 o o.1 0.005 0.05
8 100 0.02 o.1 0.005 0.05
o 100 o.1 o.1 0.005 0.05
10 100 0.2 0.1 0.003 0.05
1r 100 Q.7 0.1 0.005 0.05
12 100 0.4 o.1 0.0005 0.0035
13 100 0.4 o.1 0.001 0.01
14 100 0.4 o.1 0.002 0.02
15 100 0.4 0.1 0.007 0.07
16 100 0.4 0.1 0.009 0.09
17 20 0.4 0.1 0.005 0.05
18 50 0.4 o.I 0.00% 0.05
19 400 0.4 o.1 0.005 0.05
20 100 0.4 o 0.0005 0.005
21 100 0.4 0.8 0.0005 0.0035
22 100 0.4 0.08 0.005 0.05
23 100 0.4 0.2 0.002 0.02
24 100 0.4 0.4 0.001I o.01
25 100 0.4 0.6 0.00067 0.0067
26 100 0.4 0.8 0.0005 0.005

analysis with constant feed concentration, and there the longitudinal diffusion
coefficient is varied.

RESULTS AND DISCUSSION

We will first consider isolated peaks. From the results in Table II it appears
that in sorption chromatography steady state conditions are approached much more
slowly than in partition chromatography. Therefore, under ordinary conditions,
plots of 4 and u, against time yield curved lines and hence the peak velocity »
and spreading coefficient D are variable quantities. However, if the sorption isotherm
has a finite slope at the origin, as is the case with Langmuir isotherm, the conditions
of partition chromatography are approached as a limit. We will therefore first study
the asymptotic behaviour of isolated peaks.

In a column of infinite length the spreading of a peak will cause the concen-
tration in the peak to decrease indefinitely. Thus, as f tends to zero eqn. (2) takes the
asymptotic form: ‘ '

klo

oh '
ETR kicf — kol = — ko (h e ]‘) . (x9)

Eqns. (1) and (x9) may be compared with those of partition chromatography,
eqns. (1) and (2) in ref. 6. To make a direct comparison possible we delete the term for

J. Cliromatog., 24 (1966) 39-55



THEORY OF SORPTION CHROMATOGRAPHY. II,

43
longitudinal diffusion in the stationary phase in the latter equations and put V, =
Then, by identity:

ke = 2 Do (z0)
and

klc

=7 (21)

It then becomes possible to use the exact expressions for peak velocity and peak
spreading, which were derived for the partition case, eqns. (36) and (39) in ref. 6.

With proper values of the parameters (IV', = 1 and D, = 0 in the last term in the
expression for D) we get:

v/elc . (22)
ke V1
and
D = Py -+ o0 3 = Dy + fl’f_(_l_:ﬂ (23)
I _/i]f_ koT"y (I + —iil—f—)I Fee
kol ko V'

These relations are amenable to simple physical interpretations. Thus, » is equal
to the fraction of solute in the mobile phase, and is independent of the rate of the
sorption reaction (%,/%, is the equilibrium constant). D, on the other hand, is strongly
dependent on the reaction rate. For an infinitely fast reaction the chromatographic
dispersion vanishes, and the spreading is solely due to longitudinal diffusion in the
mobile phase. The spreading coefficient then equals the diffusion coefﬁcwnt times the
fraction of solute in the mobile phase.

In order to show the deviation from asymptotic conditions for different column
characteristics, v and D values were calculated for the matrixes in Table II according
to eqns. (22) and (23), and from finite differences of the data in Table II, according to:

Au Apg

— e —_ L ——
v=gi P =t | (24)

The results for the mobile phase are listed in Table III. They are expressed in
local units (7 and »7 as units of time and length respectively) and refer to the mid-
points of the respective intervals. '

The data in Table III show that » generally is rather close to its asymptotic
value, whereas for D pronounced deviations occur. The deviations are small if the
initial concentration is low, as in matrixes 17 and 18. Also, in the case of large D
values the asymptotic conditions are rapidly approached. Then the peak spreads
out rapidly and its concentration falls to a level where asymptotic conditions prevail.
This is the case in matrixes 12, 13 and 14 where the reaction rate is low and hence D
is large. In cases when the concentration in a peak remains high, usually pronounced
deviations from asymptotic conditions occur. This happens when the column is
overloaded, matrix 19, and also when the reaction rate is high, matrixes 15 and 16.

J. Chromatog., 24 (1966) 39~55
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However, it should be noted that the use of finite differences in the calculations in-
volves an approximation which becomes less satisfactory at high reaction rates (see
Appendix). The deviations in the latter case are therefore exaggerated.

TABLE I1I

VALUES OF RELATIVE PEAK VELOCITIES AND SPREADING COEFFICIENTS

For each matrix » is given in the first row and D in the second.

Malvix Time (in units of T)
No.
' 30 75 Iz5 175 D
I 0.1644 0.1287 0.11Q9T 0.I144 0.0909rL
0.1006 0.0855 0.0817 0.0799 0.030085
2 0.1633 0.12%77 0.1I83 0.I137 0.0909I
0.0909 0.0899 0.0840 0.0822 0.03460
3 0.1621 0.1267 0.1175 0.1130 0.0900r
0.1029 0.0897 0.0865 0.0848 0.04114
4 0.003695 0.003576 0.003373 0.001996
0.00339 0.00278 0.00245 0.000895
5 0.02546 0.02366 0.02029 0.01854 0.009g01
. 0.01884 0.01752 0.01423 0.01342 0.004378
) 0.4176 0.3788 0.3675 0.3619 0.3333
o.1701 o.1722 0.1717 0.1717 0.07592
7 1.0000 1.0000 1.0000 1.0000
0.05000 ©0.05000 0.04999 0.05000
8 0.9052 0.8500 .0.8003 0.7841 0.6667
0.3102 0.6705 0.8g925 0.9865 0.6260
9 0.5393 0.40I0 0.3702 0.3557 0.2857
0.5342 0.5468 0.5288 0.5201 0.2476
10 0.3147 0.2360 0.2182 0.2096 0.1667
0.2787 0.2367 0.2266 0.2218 0.1009
11X 0.09405 0.07384 0.06863 0.06613 0.05405
0.04481 0.04033 0.03915 0.03882 0.01376
12 0.1526 0.1004 0.1032 0.1013 0.0909I
0.5058 0.3312 0.3240 0.3203 0.3051
13 0.1270 0.1136 0.1081 0.1053 0.0909I
0.2332 o.1800 0.I75L 0.1726 0.1548
14 0.1437 0.1210 0.1135 0.1008 0.09091
0.1100 0.1299 0.100L 0.1073 0.07968
15 0.16064 0.1284 0.1187 0.1140 0.09091
0.0808 0.0866 0.0831 0.0813 0.02600
16 0.1673 " 0.1285 0.1188 0.1140 0.09091
0.I1013 0.0867 0.083L 0.0812 0.02124
17 0.1078 ©.0094 0.0973 0.0962 0.09091
0.0503 0.0499 0.0497 0.0496 0.03460
18 0.1303 0.1114 0.1062 0.1036 0.0909I
0.0632 0.0599 0.0589 0.0583 0.03460
19 0.3764 0.1886 0.1619 0.I495 0.09091
0.5228 0.3521 0.305L 0.2857 0.03460

J. Chromaltog., 24 (1966) 30~55
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Peak asymametry

The form of the concentration peaks was found to be rather similar in all cases
studied. From the data in Table II it appears that generally x4 < M. Thus, the peaks
exhibit negative skewness (according to Pearson’s measure S = (u— M)/ V w,). This
behaviour can be explained as an effect of the nonlinear sorption isotherm, which has
the tendency to compress the leading boundary of a peak. This effect is reduced when
asymptotic conditions are approached. It is realized from eqns. (22) and (23) that in
the limit of partition chromatography the operational conditions are symmetric, as
the equations are invariant under the reversal of the velocity of the mobile phase.
Under these conditions an originally symmetric peak will remain symmetric. Some
typical peaks are reproduced in Figs. 1, 2 and 3. In Fig. 1 the peaks both in the mobile
and stationary phases are shown, whereas in Figs. 2 and 3 the variation of shape
with time is shown.

Convergence of the numerical solutions

In order to investigate the dependence of the numerical solutions on the size of
the finite differences, some calculations were carried out in which the number of cells
for a given length of column was varied. Thus, in the matrixes 22, 23, 24, 25 and 26,
the initial peak is confined to 2, 5, 10, 15 and 20 cells, respectively, and the operational
conditions of the corresponding chromatographic columns are identical if v is assigned
the values 10, 4, 2, */5 and 1 sec, respectively. The results for the mobile phase are
listed in Table IV in the form of zu and 72u, values for two columns of each matrix,

TABLE IV
CONVERGENCE OF THE NUMERICAL SOLUTIONS

Matrix ¥ (sco) Column Tu 72y v D

No. No. :

22 Io ;g :?ggg ;:‘;225; 0.1333 0.5867
23 4 35 Gosek el 0w 04923
24 2 130 jooss  a1q8iq 0T340 04803
25 Yy 150 :gjng ;iggg; 0.1345 0.4913
S 200 omas  aiesdy  O134d 04929

representing the situations at the same time instances. It also contains » and D
values, calculated from the differences between the two sets of values according
to eqn. (24). Finally, in Fig. 4 the concentration distributions for a peak, resulting
from some of these matrixes, are compared. It may be concluded that the convergence
of the numerical solutions is quite satisfactory.

J+ Chromatog., 24 (1966) 39-55
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o i /
° 10 20 30 7
f
3 |
2 e
01
‘-
h ° 20 30 20 7

Fig. 1. Concentration distribution in the mobile and stationary phases. Column j = 200 of matrix
No. 2.

Fig. 2. Concentration distribution in the mobile phase. Columns j = 100 and j = 200 of matrix
No. 14.

o

o 1 1 L A (] L 1 7

0 S0 i

Fig. 3. Concentration distribution in the mobile phase of an ovcrlowdcd chromatogtaphlc column
Columns j = 100 and j = 200 of matrix No. 19.

Fig. 4. Concentration distributions in the mobile phase resulting from calculations with finite
differences of varying size. The curve represents column j = 200 of matrix 26, filled circles column
7 == 100 of matrix 24 and unfilled circles column 7 = 20 of matrix 22.

J. Chrvomalog., 24 (19066) 30-55
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Frontal analysis :

' We will next consider a column fed with a solution of constant concentration.
This case is amenable to a straightforward analytical treatment and has been studied -
by earlier investigators? 5, We will indicate here a more direct approach where longi-
tudinal diffusion is also taken into account. We start with eqns. (1) and (2) and inves-
tigate their solution for a stationary boundary. The existence of such a boundary is
guaranteed by the nonlinearity of the sorption isotherm, which makes the movement
of different points of the boundary a function of concentration.

Denoting the velocity of the stationary boundary by w, we may determine it
directly from the mass balance equation:

viVifo = wiVifo + wih,, (25)

where fy and %, refer to feed concentration and equilibrium concentration of f and h,,‘
respectively. From (25) and (2) (with 84/0¢ = o) we get:

w
—'I)— = = (26)

We will next switch to a new coordinate system, which follows the movement
of the boundary. Thus we make the transformation:

§ = v — ot ' (27)

Eqns. (1) and (2) take the form:

of o2f . of T (oh ol
== e e (U — @) = — m [ — ) — 8
Y 1 GE (v — w) 5 T (81 w 85) (28)
oh onh
w w e = Ry fle — h) — kol (29)
For a stationary boundary we have:
of onh
= =° (30)
Hence:

agy df w dn
Dl—d—;ge——-—(v-—w)d—s-i——ﬁl——a—é-—o (31)
w —3—2 + k1f (¢ — h) — kelt = © (3?)
A first integration of (3r) gives:

af | w ' | |

' j.jClirmnatog., 24 (1966) 39—55
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For an originally empty column we have:

df
.f=h=ag=o (34)
hence:
K = o

Thus, in this case the stationary boundary is determined by the following
equations:

df

ow
dn
w—: + kif(c— 7)) — kel = 0 (36)
d&

These equations may be solved directly for D, = 0. Then according to (35):

],’; L | (38)

I+ew

The case D; # o is more troublesome. However, owing to the small value of
D,, the solution for D, = o is a good first order approximation. It is therefore pos-
sible to solve the full equations by iteration, inserting the approximate solution into
the non-linear term in eqn. (36). The resulting linear equations may then be solved
by standard methods.

In Table II numerical solutions are given for the case &« = 0 and « = 0.8.
Choosing T = 1 sec. this gives D; = o and D, = 41075 cm? sec™! respectively. In
Table II only the values of 44 are given. They determine the first moment x of the
boundary. We have:

oD

i =1.§=:! W(h—fe+1) =,

1

an oD

I(’I:-i--I)fi+1 +'i§:ﬁ+l=i§xn=‘40 (39)

i1™Ms
1 Ms

1 i -_i

Here f, is the constant concentration in the plateau region. In the mobile phase
we have f, = 100, hence u = 44/100. From the data in Table II we see that the velocity
of a stationary boundary is constant. It has exactly the value predicted by eqn. (26).
In Fig. 5, the boundaries for the two cases are shown in detail. We see that in the case
of non-vanishing longitudinal diffusion the boundary is not symmetrical. The effect
of diffusion is seen to be rather small, however, and the translational velocity of the
boundary remains unaffected.
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Fig. 5. Concentration profiles in frontal analysis. Columns § = 200 of matrixes Nos. 20 (line) and

271 (filled circles).
APPENDIX

Some aspects concerning the errors involved in the application of the finite
difference method to chromatography are now considered. First, for the sake of
generality, the recursion formulae in partition and sorption chromatography are
reformulated on a common basis, and then take the form:

P = fuy + YYeee(fs—1,5—2fig + F1 +1.7) (40)
fiv1,941 = [0y — By (41)
Iy, g 1 = Iy + Oy (42)

Here the term &y represents the exchange of solute between the mobile and
stationary phases in a cell, and is thus determined by the kinetics of the chromato-
graphic process. The parameter § has the values V,/V; and 1/V, for partition and sorp-
tion chromatography respectively. In the case of partition chromatography we get
according to eqns. (23), (24) in ref. 2:

pou = n (1o — = by (43)
Y

(here 44 is the solute concentration in the stationary phase, but is designated yg;; in
ref. 2).

In sorption chromatography with Langmuir kinetics we get according to
eqns. (12)—(x6) in ref. 1 .

Oy = Oy + 8%y + ... 4 Oy (44)
with

Okyy = -;I; (Rl — 1y (¢ — Il —1ly) — koltk —1y] k=1,2 ..,m (45)

(here, by comparison to ref. 1, the indices have been changed for convenience).
The object is now to establish the variation with time in the first and second
moments of a concentration distribution and compare the results with exact formulae.
Such formulae are available in partition chromatography and the treatment will
therefore be restricted to this case only, the results also being valid asymptotically
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for sorption chromatography. We will consider isolated peaks and, in the formulae
below, let all summation limits refer to points on both sides of the peak, in regions
of zero concentration. For the second moment at time 5 4+ © we then get:

Azger= Dy ri=T 6+ D ivngr1=(—n I @+ 0% +

v

+ nfy 2 (34 12 hy  (46)

To evaluate the first term on the right hand side we substitute for f%; from
eqn. (40) and use the identities:

(P 4+ 1)2=14 4 217 4 1
G4+ 1)2=( —1)2 +4(G—1) + 4
Then: |

cAe g1 = (1 —n) (A2 g + 2 A1y + Aos + adoy) 4+ nfy 2 (1 + 1)2 by (47)
k2

Using the same procedure we get for the first moment:

At jer= (1 —n) (d1y+ Ao +nfy 2 (¢ + 1) Ay (48)

In general these expressions are dependent on the original concentration
distributions (fi,. #4,) and hence become exceedingly complicated for high values of 7.
However, when the reaction rate is so high that equilibrium between the two phases
in a cell is established in an equilibration step, this dependence disappears and the
equations take simple forms. We may use eqns. (21)—(24) in ref. 2 and, as then:

m = o0 in the expressions for 7 and &, we get
7 = &, which implies:

I
fo+1,3==hy (49)
Y

Also, as the concentration in a phase is now constant, we use normalized dis-
tributions and put:

Aoy =1 (50)
Inserting the last two equations into (47) and (48) we get:

Az, j+1=4A2;+ (1 —n) (2417 + 1 + ) : (51)
Al je1=A134+ 1 —1 (52)
For the variance we get:

H2,3+1= Az, 41 —A%, 541 = p2; + a(1 —n) +n(1 —n) (53)
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We are now in the position to write down expressions for the peak velocity »
and spreading coefficient D. In local units they take the form:

1J=/]1'j+1-——-/111=1-——7} (54)
D =1/p (e, +1—p2j) = Yaa(r —n) + Yoyt —mn) (55)

Substituting the values of &« and # and comparing the formulae with eqns. (36)
and (39) in ref. 6 we find that no error is involved in the expression for », and that in
the expression for D the term representing longitudinal diffusion is exact, while the
chromatographic dispersion is subject to the error 1/, n (x — 7).

This is strictly valid for an infinitely fast equilibration reaction and it is there-
fore of interest to consider the error at lower reaction rates. Although a general
theoretical analysis of this problem is impracticable, some information may be ob-
tained from the numerical data in this paper and in ref. 3. Thus, it appears that for
steady state conditions the error in » always is very small and that the error in D
generally decreases with decreasing reaction rate. This indicates that 1/, % (T — %)
represents the upper limit of the error of the chromatographic dispersion. Further
the fact that no error is involved in the longitudinal diffusion is of great interest. If
pure diffusion is considered, this implied that the finite difference method (Schmidt’s
formula, ¢f. ref. 7) leads to macroscopically correct results (with respect to u,, ¢f.
ref. 8). This result may be generalized and, with the help of the formula in ref. 8,
it may be shown that the result is correct even when the diffusion coefficient is a
linear function of concentration.
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SUMMARY

The operation of a chromatographic column with a sorption reaction following
Langmuir kinetics has been simulated by numerical calculations on a digital computer.
The operational conditions of the column are varied within wide limits and the results
are related to theoretical considerations. It is shown that in sorption chromatography
the conditions of partition chromatography are asymptotically approached and the
process may then be described by the exact analytical formulae of linear partition
chromatography. The errors in the finite difference method are discussed and eval-
uated for some special cases.
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