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SYMBOLS 

f = 

12 = 

C = 

161 = 

122 = 

= 

b,, Dz = 
VI, v, = 
Jmt3 = 
hmg 3 = 
A$ = 

P = 

P2 = 

M = 

t = 

Y 
= 

V = 

D = 
co = 

a = 

solute concentration 
solute concentration 
concentration of sorbent 
rate constant for sorption 
rate constant for desorption 
translational velocity of mobile phase 
diffusion coefficients in mobile and stationary phase respectively 
volumes per interphase area of mobile and stationary phase respectively 
matrix element representing f 
matrix element representing 12 
ith moment of the concentration distribution 
mean of the concentration distribution 
variance of the concentration distribution 
mode of the concentration distribution 
duration of equilibration step 
partition coefficient 
peak velocity 
spreading coefficient 
velocity of concentration front in frontal analysis 

2J31 -- 
tv3 

,‘I = 

112 = 

YV2 _--- 
VC/'1 + yv2 

(1 - e - W) 

2D2 y 

( 

I 
-- -_ 

T/'2 Vl + -7; ) 

INTRODUCTION 

The theoretical treatment of sorption chromatography in the preceding article1 
’ has been supplemented by numerical calculations performed on a digital computer. 

As the basis of the calculations the following equations were used: 

J. Cltromatog., 24 (1966) 39-55 
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ah 
- = h, (c - II,) f - iz2h at 

These equations were solved by a finite difference approximation method, 
leading to eqns. (40)-(42) in the Appendix. The numerical treatment of the problem 
followed the general outlines of the procedure in partition chromatography293. The 
results were obtained in the form of the .matrixes (J’“gg) and (1~~3) representing con- 
centration distributions in the mobile and stationary phases respectively of the 
chromatographic column. The data were abstracted from the computer in the form 
of a few selected columns of a matrix, representing the concentration distribution at 
different times. The zeroth, first and second moment with respect to the origin, with 
the cell width as unit length, were also calculated for every column. For the jth 
column they are defined as follows: 

Al = 2 i fij (4) f 

A2 = c i” fij (5! 
t 

with corresponding definitions for the It-matrix. 
For a characterization of the concentration distributions the reduced moments, 

the mean ,u and the variance ,u2 were used. They are defined as follows: 

A2 
p2 = -- _ k&2 

A0 

(6) 

In addition the modeM, defined as the location of the maximum of the smoothed 
distribution curve, was also determined. 

The primary results of the calculations are in the following given in terms of the 
parameters &, M, ,u and ,u2. 

METHOD OF CALCULATION 

In the present calculations the characteristic parameters of column operation 
were varied in order to determine their effect on the chromatographic process. 

From the form of eqns. (I) and (2) it follows that not all parameters need be 
varied independently. The following transformations are seen to leave the equations 
unchanged : 

J. Ckromalog., 24 (IgGG) 39-55 
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(9) 

(at, KI, AZ, Dl, v) + (t, a&, aha, aD1, av) 

where a is an arbitrary constant. 

(10) 

Each of these transformations makes it possible to, change the value of one of 
the parameters via corresponding changes in some other parameters, In the calcula- 
tions therefore only the parameters c, D,, iz, and k, were varied, the others being 
kept constant and, when not otherwise stated, had the values: 

v = 0.0x (cm set-1) (11) 

'CI'l = 0.004 (cm) (12) 

f = 100 (13) 

t = 5 (set) (14) 

The value of T/‘, was chosen to represent a column filling consisting of tightly 
packed spherical beads with a radius of approximately o.01 cm. The value of t may be 
fixed arbitrarily, but is related to the values of other variables ‘by formula (10). 
(Da, 12, and Jz2 enter the calculations in form of the combined parameters a = 2 DJrv2, 

‘, 

z/m Ii, and r/m 1~~). The. value in (14) may be used for, convenience, as it provides 
realistic operational conditions for the column. It gives a cell width ZZI = 0.05 cm. 

All the matrixes were of the order 12 = 200 and in all cases the value nz = 5 
was used. 

The calculations were carried out with the following initial conditions : 

JOi1 = l 
1.00 Ior i = 1 

ofori = 2,....,200 
(IS) 

JO13 = 
1 

Iooforj= ~,....,n 

0 for j =n+I,,...,200 
(16) 

(17) 

h”ilio = 0 lori = I,....,zpo (18) 

In the case of isolated peaks in general the value 32 = 5 was used, though for 
matrixes 22, 24, 25 and 26 the value of 32 was 2, 10, 15 and 20, respectively. In the 
case,of frontal analysis, for matrixes 21 and 22, the value of n was 200.. 

‘The values of the characteristic, parameters for the different matrixes are listed 
in Table I, and the primary results of the calculations are given in Tables II and IV. 

In Table II, the matrixes may be grouped together. according to ,the following 
.’ scheme; In. I, 2 and 3 the longitudinal diffusion coefficient is varied ; in 4; 5,2 arid.6 the 
equilibrium constant is varied; in 7,8, 9; IO, 2 and L I the concentration of the sorbent 

; :’ 

.is v‘aried’; in i2, 13,,14, 2, 15 and 16 the reaction rate is varied and in,I7, 18, ? and Ig : 

‘: the feed concentration. isvaried. Finally, the matrixes. 20, and 21 ‘represent frontal ‘, ,.. 
, 

: .‘:. 
(,’ ,. ;. 

‘L,,‘.’ ., J, Clrro~zilo~., 24 (+GG) 39-&j I ,,i, 
,; ” ; ..’ ,. 

.,” 
‘. 

,;, :, / ., .,,’ ;.. ‘, : ; 
,,’ : ‘j’irj 
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TABLE I 

VALUES OF CNARACTERISTIC PARAMETERS 

I 100 094 0 0.005 0.05 

2 100 o-4 0.1 0,005 0.05 
3 100 0.4 0.2 0.005 0.05 
d 100 100 100 0.4 0.4 0.X 0,X 0.1 0.005 0.005 0.005 0.001 

0.4 0,005 0.25 
z 100 100 0,02 0 0.1 0.1 0.005 0.05 

0.005 0.05 
9 100 0. I 081 0,005 0,05 

IO 100 0.2 0.1 0,005 0,05 
II 100 0.7 0.1 0.005 0.05 
12 100 004 0.1 o.oooJj 0.005 

I3 100 004 0.1 0,001 0,OI 

I4 100 0.4 0.1 0,002 0.02 

15 100 004 0.1 0.007 0.07 
IG 100 0.4 0.1 o.oog 0.09 

I7 
;: 

0.4 0.1 0.005 0.05 
IS o-4 0.1 0.005 0.05 
19 400 004 0.1 0.005 0.05 
20 100 004 0 0.0005 0.005 
21 100 004 0.8 0.0005 0.005 
22 100 014 0.08 0.005 0.05 
23 100 0.4 0.2 0.002 0.02 

24 100 04 0.4 0.001 0.01 
25 100 0.4 0.6 0.00047 0.0067 
26 IO0 004 0.8 0.0005 0.005 

analysis with constant feed concentration, and there the longitudinal diffusion 
coefficient is varied. 

RESULTS AND DISCUSSION 

We will first consider isolated peaks. From the results in Table II it appears 
that in sorption chromatography steady state conditions are approached much more 
slowly than in partition chromatography, Therefore, under ordinary conditions, 
plots of ,U and ,u2 against time yield curved lines and hence ,the peak velocity Y 
and spreading coefficient D are variable quantities. However, if the sorption isotherm 
has a finite slope at the origin, as is the case with Langmuir isotherm, the conditions 
of partition chromatography are approached as a limit. We will therefore first study 
the asymptotic behaviour of isolated peaks. 

In a column of infinite length the spreading of a peak will cause the concen- 
tration in the peak to decrease indefinitely. Thus, asf tends to zero eqn. (2) takes the 
asymptotic form : 

Eqns. (I) and (19) may be compared with those of partition chromatography, 
eyns. (I) and (2) in ref. 6. To make a direct comparison possible we delete the term for 

J. Chvomato~., 24 (1966) 39-55 
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longitudinal diffusion in the stationary phase in the latter equations and put V, = I, 
Then, by identity: 

Is2 = 2n2 (20) 

and 
IZlC 
x; = Y (21) 

It then becomes possible to use the exact expressions for peak velocity and peak 
spreading, which were derived for the partition case, eqns. (36) and (39) in ref. 6. 
With proper values of the parameters (V, = I and D, = o in the last term in the 
expression for D) we get: 

I 

v = --G-c- 
IfIzV 2 1 

and 

12 = --3- + -__~%L-j VW (I -v) 

RlC 
1+-- 

h2Vl 
1222Vl 

( 
Y. + &)' 

= Dp + --lz__ 

2 
(23) 

These relations are amenable to simple physical interpretations. Thus, 1’ is equal 
to the fraction of solute in the mobile phase, and is independent of the rate of the 
sorption reaction (12,/12, is the equilibrium constant), D, on the other hand, is strongly 
dependent on the reaction rate. For an infinitely fast reaction the chromatographic 
dispersion vanishes, and the spreading is solely due to longitudinal diffusion in the 
mobile phase. The spreading coefficient then equals the diffusion coefficient times the 
fraction of solute in the mobile phase. 

In order to show the deviation from asymptotic conditions’for different column 
characteristics, v and D values were calculated for the matrixes in Table II according 
to eqns. (22) and (23)) and from finite differences of the data in Table II, according to: 

(24) 

The results for the mobile phase are listed in Table III. They are expressed in 
local units (z and vr as units of time and length respectively) and refer to the mid- 
points of the respective intervals. 

The data in Table III show that v generally is rather close to its asymptotic 
value, whereas for D pronounced deviations occur. The deviations are small if the 
initial concentration is low, as in matrixes 17 and 18. Also, in the case of large D 
values the asymptotic conditions are rapidly approached. Then the peak spreads 
out rapidly and its concentration falls to a level where asymptotic conditions prevail. 
This is the case in matrixes 12, 13 and 14 where the reaction rate is low and hence D 
is large. In cases when the concentration in a peak remains high, usually pronounced 
deviations from asymptotic conditions occur. This happens when the column is 
overloaded, matrix 19, and also when the reaction rate is high, matrixes ,15 and 16. 

J. Chromatog,, 24 (1966) 39-55 
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However, it should be noted that the use of finite differences in the calculations in- 
volves an approximation which becomes less satisfactory at high reaction rates (see 
Appendix). The deviations in the latter case are therefore exaggerated. 

VALUl3S OF RELATIVE PEAK VELOCITIES AND SPREADING COEFFICIENTS 

For each matrix Y is given in the first row and D in the seconcl. 

Matrix Time (in zmits of z) 
No. 

30 75 125 175 CL, 

I 

2 

3 

4 

5 

G 

7 

S 

9 

‘IO 

II 

I2 

13 

14 

I.5 

ZG 

=7 

rS 

19 

0.1644 
o.Y.006 

0.1433 
0.0909 

0.1G21 
0.102g 

0.02546 
0.01884 

0.4176 
0.1701 

1.0000 
0.05000 

0.9052 
0.3102 

o-5393 
0.5342 

o-3147 
0.2787 

o.094o5 
0.044S1 

0.1526 
0.505s 

0.1270 
0.2332 

O-1437 
0.1100 

o.IGG~ 
0.0805 

0.1673 
0.1013 

0.107s 
0.0503 

0.1303 
0.0632 

o..3764 
0.5228 

0.1287 
0.0355 

0.1277 
o.osgg 

0.1267 
o.osg7 

0.003695 

0.00339 

o.023GG 
0.01752 

0.3788 
0.1722 

1.0000 
0.05000 

o.sgoo 
0.6705 

0.4010 
0.5468 

0.2360 
0.23G7 

0.07384 
0.04033 

0.1064 
0.3312 

0.1136 
0.1800 

0.1210 
0.12gg 

0.1284 
0.0566 

0.1255 
0,0867 

o.og94 
0.0499 

0.11r4 

0.0599 

0.1886 
0.3521 

0.1rgr 0.1144 
0.0817 0.0799 

0.11Q3 0,1x37 
0.0840 0.0822 

0.1175 
0.0865 

0.003576 
0.00278 

0.0202g 
o.oL423 

0.3G7.5 
0.1717 

I.0000 

o.04999 

,o.sog3 
0.5925 

0.3702 
0.52SS 

0.2182 
0.22GG 

o.oGSG3 

0.039I5 

0.1032 
0.3240 

0.1081 
0.1751 

0.1135 
0.1ogr 

0.1187 
0.0531 

0.115s 
0.053r 

0.0973 
0.0497 

0.x0& 
0.0589 

0.1619 
0.3051 

0.1130 
0.0845 

0.003373 
0.00245 

0.01854 
0.01342 

0.3619 
0.1717 

0.7841 
o.g8G5 

0.3557 
0.5201 

o.zogG 
0.22zs 

o.oG613 
0.03882 

0.1013 
0.3203 

0.1053 
0.1726 

o.1og8 
0.1073 

0.1140 
0.0813 

0.1140 0,ogogr 
0.0812 0.02124 

o.ogG2 
o.o4gG 

0.1036 
0.0583 

0.1495 
0.2857 

o.ogog1 
0.03005 

O.OgOQI 
0.03460 

o.ogogs 
0.04II4 

o.ooIggG 
o,ooosg5 

o.ooggo1 
0.004378 

0.3333 
0.07592 

1.0000 
0.05000 

0.6667 
o.G260 

0.2857 
0.2476 

0.1667 
0.1oog 

o*o5405 
0.01376 

o.ogogr 
0.3051 

o.ogogr 
0.1548 

o.ogogr 
0.07968 

o.ogogr 
0.02600 

o.ogogr 
0.03460 

o.ogog1 
0,034Go 

0,ogogr 
0.03460 

J, Clwomatog., 24 (1966) 39-55 



4s W. VINIC 

Peak asynznzetry 
The form of the concentration peaks was found to be rather similar in all cases 

studied. From the data in Table II it appears that generally p < M. Thus, the peaks 
exhibit negative skewness (according to Pearson’s measure S = (p - M)/ d,u2), This 
behaviour can be explained as an effect of the nonlinear sorption isotherm, which has 
the tendency to compress the leading boundary of a peak. This effect is reduced when 
asymptotic conditions are approached. It is realized from eqns. (zz) and (23) that in 
the limit of partition chromatography the operational conditions are symmetric, as 
the equations are invariant under the reversal of the velocity of the mobile phase. 
Under these conditions an originally symmetric peak will remain symmetric. Some 
typical peaks are reproduced in Figs. I, 2 and 3, In Fig. I the peaks both in the mobile 
and stationary phases are shown, whereas in Figs. 2 and 3 the variation of shape 
with time is shown. 

Co~avergence of i?he natnzerical solattio7as 

In order to investigate the dependence of the numerical solutions on the size of 
the finite differences, some calculations were carried out in which the number of cells 
for a given length of column was varied. Thus, in the matrixes 22, 23, 24, 25 and 26, 
the initial peak is confined to 2, 5, IO, 15 and 20 cells, respectively, and the operational 
conditions of the corresponding chromatographic columns are identical if z is assigned 
the values 10, 4, 2, 4//3 and I set, respectively. The results for the mobile phase are 
listed in Table IV in the form of z,u and 72~~ values for two columns of each matrix, 

TAl3LE IV 

CONVERGENCE OFTWE NUMERICAL SOLUTIONS 

ibfairh t (see) Column t/t s/.1 2 V D 
NO. NO. 

22 

23 4 

24 2 

25 

2c 

412 

I 

IO 28.336 126,952 
20 41.665 244.283 

0.1333 

26834 115,947 
40.305 214.411 0.1347 

50 26.633 
100 40.092 

75 26.595 
15“ 40.041 

100 26.5S3 
200 40.020 

116.94G 
214.814. 0.1346 

117.672 
215.939 0.1345 

IIS,ZIG 
ZIG.GsQ 0.1344 

0.5867 

0.4923 

"-4893 

O-4913 

o-4929 

representing the situations at the same time instances. It also contains 1’ and D 
values, calculated from the differences between the two sets of values according 
to eqn. (24). Finally, in Fig. 4 the concentration distributions for a peak, resulting 
from some of these matrixes, are compared. It may be concluded that the convergence 
of the numerical solutions is quite satisfactory. 
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Fig. I. Concentration distribution in the mobile and stationary phases. Column j = zoo of matrix 
No. 2. 

Fig, 2. Concentration clistribution in the mobile phase. Columns j = IOO and j = 200 of matrix 
No. 14. 

O 
0 50 i 

f 

3 - 

2. 

I- 

0 0 50 1 

Fig. 3. Concentration distribution in the mobile phase of nn overloaded chromatographic column 
Columns i = IOO ancl j = zoo of matrix No. 19. 

Fig. 4. Concentration distributions in the mobile phnse resulting from calculations with finite 
cliffcrenccs of varying size, The curve represents columnj = 200 of rnatrix 26, filled circles column 
j= I00 of matrix 24 and unfilled circles column j = 20 of matrix 22. 
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Frontal analysis 
We will next consider a column fed with a solution of constant concentration. 

This case is amenable to a straightforward analytical treatment and has been studied + 

by earlier investigators 49 6. We will indicate here a more direct approach where longi- ,: 

tudinal diffusion is also taken into account. We start with eqns. (I) and (2) and inves- 
tigate their solution for a stationary boundary. The existence of such a boundary is 
guaranteed by the nonlinearity of the sorption isotherm, which makes the movement 
of different points of the boundary a function of concentration. 

Denoting the velocity of the stationary boundary by CO, we may determine it 
directly from the mass balance equation: 

vtV1.fo = cdV1fo + c&h, (25) 

where fO and 12, refer to feed concentration and equilibrium concentration off and k, 
respectively. From (25) and (2) (with dIz/dt = o) we get: 

co fo I 
-=---= ------- (26) 

We will next switch to a new coordinate system, which follows the movement 
of the boundary. Thus we make the transformation: 

g=x---cd (27) 

Eqns. (I) and (2) take the form: 

af a2f af 1 aJJ all 

at= _gl---((v-~w)-_--_ --“J- 

a62 &f ( T/l at ae > 

For a stationary boundary we have: 

Hence : 

d”f 
Dl - - 

de2 

(25) 

(30) 

(3r) 

(32) 

A first integration of (31) gives: 

(331, df -- D1 d$ 
(v - w) f + E 7t = I< 

J, CJwotnalog., ,24 (IgbG) 39-55 
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For an originally empty column we have: 

f’h+o 
c 

hence : 

(34) 

Ii = 0 

Thus, in this case the stationary boundary is determined by the following 
equations : 

df 
II1 - - (v - w) f + -- 

ClF 
w 7L = t-I 
Vl 

(35) 

0) y; + hlf (c - IL) - i221L = 0 (36) 
c, 

These equations may be solved directly for D, = o. Then according to (35) : 

With (37) and (26), the integration of (36) yields: 

f I 
- = --_- 

fo hfrl 

1-t-e 
G-6 

(35) 

The case D, # o is more troublesome. However, owing to the small value of 
D,, the solution for D, = o is a good first order approximation. It is therefore pos- 
sible to solve the full equations by iteration, inserting the approximate solution into 
the non-linear term in eqn. (36). The resulting linear equations may then be solved 
by standard methods. 

In Table II numerical solutions are given for the case a = o and a = OS. 
Choosing t = I sec. this gives D, = o and D, = 4’10-5 cm2 set-1 respectively. In 
Table II only the values of A, are given, They determine the first moment 1~ of the 
boundary. We have: 

clfl=i&i(ft-fft.l-l) =,i~xifa-i~I(i + I)f~+l+,ig~fr+l =iztfr = A0 (39) 

Heref, is the constant concentration in the plateau region. In the mobile phase 
we havef, = IOO, hence ,U = A,/Ioo. From the data in Table II we see that the velocity 
of a stationary boundary is constant. It has exactly the value predicted by eqn. (26). 

* In Fig. 5, the boundaries for the two cases are shown in detail. We see that in the case 
i. of non-vanishing lbngitudinal diffusion the boundary is not symmetrical. The effect 

of diffusion is seen to be rather small, however, and the translational velocity of the 
boundary remains unaffected. . 

J. Chromaiog., 24 (1966) 39-55 
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Fig. 5, Concentration profiles in frontal analysis. Columns j = zoo of msltrixcs Nos. 20 (line) nncl 
2 I (filled circles). 

~ APPENDIX 

Some aspects concerning the errors involved in the np.plication of the finite 
difference method to chromatography are now considered. First, for the sake of 
generality, the recursion formulae in partition and sorption chromatography are 
reformulated on a common basis, and then take the form: 

f%j = fr3 4 l/2 a (Js - 1, 3 - * fcj + fz + 1. $) (40) 

fz e I.. 3 + 1 = f%j -pi, (41) 

h, 3 -I- 1 = hj f 813 (42) 

Here the term &j represents the exchange of solute between the mobile and 
stationary phases in a cell, and is thus determined by the kinetics of the chromato- 
graphic process. The parameter p has the values V,/V, and I/V, for partition and sorp- 
tion chromatography respectively. In the case of partition chromatography we get 
according to eqns. (23)) (24) in ref. 2 : 

(here kg3 is the solute concentration in the stationary phase, but is 
ref. 2). 

In sorption chromatography with Langmuir kinetics we 
eqns. (12)-(16) in ref. I 

(43) 

designated ~~g’rj in 

get according to 

(44) 

(here, by comparison to ref. I, the indices have been changed for convenience). 
The object is now to establish the variation with time in the first and second 

moments of a concentration distribution and compare the results with exact formulae. 
Such formulae are available in partition chromatography and the treatment will 
therefore be restricted to this case only, the results also being valid asymptotically 
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for sorption chromatography. We will consider isolated peaks and, in the formulae 
below, let all summation limits refer to points on both sides of the peak, in regions 
of zero concentration. For the second moment at time j + I we then get: 

-42, j + 1 = c ww -1- 1 = F (i + I)2 Jz + J., j -I- 1 = (I -q) T (i + I)2 fOi3 + i 

To evaluate the first term on the right hand side we substitute for fO+j from 
eqn. (40) and use the identities: 

(i + I>2 = i2 f 2 i -I- 1 

(i + I)2 = (i - x)2 + 4 (i - I) + 4 

Then : 

- Az,jel.= (I - 17) (A2 j + 2 illj 4 14oj + doj) + q/y c (i + I)2 hij (47) 
i 

Using the same procedure we get for the first moment: 

Al,j 41= (I - 7) (Al j + Aoj) + v/r zl (i + I) hj (48) 
i 

In general these expressions are dependent on the original concentration 
distributions (ft,,, hro) and hence become exceedingly complicated for high values of j. 
However, when the reaction rate is so high that equilibrium between the two phases 
in a cell is established in an equilibration step, this dependence disappears and the 
equations take simple forms. We may use eqns. (21)-(24) in ref, 2 and, as then : 

m = oo in the expressions for r and 6, we get 

r = E, which implies: 

Also, as the concentration 
tributions and put : 

6 

AOj = I 

(49) 

in a phase is now constant, we use normalized dis- 

(50) 

Inserting the last two equations into (47) and (48) we get: 

Az,j+l=Azj + (I ---7pJ)(2.41j + I+ 4 

Al.j+l =Alj + 1-q 

(51) 

(52) 

For the variance we get: 

(~2,j+1=~2,j~L-~21,j+l=CC2;1+~(~-~77) +77(I -7) (53) 
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We are now in the position to write clown expressions for the peak velocity v 
and spreading coefficient D. In local units they take the form: 

Substituting the values of a and q~ and comparing the formulae with eqns. (36) 
and (39) in ref. 6 we find that no error is involved in the expression for V, and that in 
the expression for D the term representing longitudinal diffusion is exact, while the 
chromatographic dispersion is subject to the error 1/z q (I - 7). 

This is strictly valid for an infinitely fast equilibration reaction and it is there- 
fore of interest to consider the error at lower reaction rates. Although a general 
theoretical analysis of this problem is impracticable, some information may be ob- 
tained from the numerical data in this paper and in ref. 3* Thus, it appears that for 
steady state conditions the error in v always is very small and that the error in D 
generally decreases with decreasing reaction rate. This indicates that 1/z r (I: - 7) 
represents the upper limit of the error of the chromatographic dispersion. Further 
the fact that no error is involved in the longitudinal diffusion is of great interest, If 
pure diffusion is considered, this implied that the finite difference method (Schmidt’s 
formula, cf. ref. 7) leads to macroscopically correct results (with respect to ,u2, cf. 
ref. S), This result may be generalised and, with the help of the formula in ref. 8, 
it may be shown that the result is correct even when the diffusion coefficient is a 
linear function of concentration. 
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SUMMARY 

The operation of a chromatographic column with a sorption reaction following 
Langmuir kinetics has been simulated by numerical calculations on a digital computer. 
The operational conditions of the column are varied within wide limits and the results 
are related to theoretical considerations. It is shown that in sorption chromatography 
the conditions of partition chromatography are asymptotically approached and the 
process may then be described by the exact analytical formulae of linear partition 
chromatography, The errors in the finite difference method are discussed and eval- 
uated for some special cases. 
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