THEORY OF SORPTION CHROMATOGRAPHY

II. NUMERICAL CALCULATIONS

I-IANS VINK
Institute of Physical. Chemistyy, University of Uppsala (Sweden)
(Received January 6th, Ig66)

SY'MBOLS

f	$=$ solute concentration in mobile phase
h	$=$ solute concentration in stationary phase
c	$=$ concentration of sorbent
k_{1}	$=$ rate constant for sorption
h_{2}	$=$ rate constant for desorption
v	$=$ translational velocity of mobile phase
D_{1}, D_{2}	$=$ diffusion coefficients in mobile and stationary phase respectively
V_{1}, V_{2}	$=$ volumes per interphase area of mobile and stationary phase respectively
$f^{m_{i j}}$	$=$ matrix element representing f
$h^{m_{i}} \boldsymbol{j}$	$=$ matrix element representing h
$A_{\text {t }}$	$=i$ th moment of the concentration distribution
μ	$=$ mean of the concentration distribution
μ_{2}	$=$ variance of the concentration distribution
M	$=$ mode of the concentration distribution
τ	$=$ duration of equilibration step
γ	$=$ partition coefficient
ν	= peak velocity
D	= spreading coefficient
ω	$=$ velocity of concentration front in frontal analysis
α	$=\frac{2 D_{1}}{\tau v^{2}}$
.7	$=\frac{\gamma V_{2}}{V_{1}+\gamma V_{2}}\left(\mathrm{I}-\mathrm{e}^{m i \tau}\right)$
m	$=\frac{2 D_{2}}{V_{2}}\left(\frac{\gamma}{V_{1}}+\frac{1}{V_{2}}\right)$

INTRODUCTION

The theoretical treatment of sorption chromatography in the preceding article ${ }^{1}$ has been supplemented by numerical calculations performed on a digital computer. As the basis of the calculations the following equations were used:

$$
\begin{align*}
& \frac{\partial f}{\partial t}+\frac{1}{V_{1}} \frac{\partial h}{\partial t}=D_{1} \frac{\partial^{2} f}{\partial x^{2}}-v \frac{\partial f}{\partial x} \tag{I}\\
& \frac{\partial h}{\partial t}=k_{1}(c-h) f-k_{2} h \tag{2}
\end{align*}
$$

These equations were solved by a finite difference approximation method, leading to eqns. (40)-(42) in the Appendix. The numerical treatment of the problem followed the general outlines of the procedure in partition chromatography ${ }^{2,3}$. The results were obtained in the form of the matrixes ($f m_{i j}$) and ($h^{m_{i j}}$) representing concentration distributions in the mobile and stationary phases respectively of the chromatographic column. The data were abstracted from the computor in the form of a few selected columns of a matrix, representing the concentration distribution at different times. The zeroth, first and second moment with respect to the origin, with the cell width as unit length, were also calculated for every column. For the j th column they are defined as follows:

$$
\begin{align*}
& A_{0}=\sum_{i} f_{i j} \tag{3}\\
& A_{1}=\sum_{i} i f_{i j} \tag{4}\\
& A_{2}=\sum_{i} i^{2} f_{i j}
\end{align*}
$$

with corresponding definitions for the π-matrix.
For a characterization of the concentration distributions the reduced moments, the mean μ and the variance μ_{2} were used. They are defined as follows:

$$
\begin{align*}
& \mu=\frac{A_{1}}{A_{0}} \tag{6}\\
& \mu_{2}=\frac{A_{2}}{A_{0}}-\mu^{2} \tag{7}
\end{align*}
$$

In addition the mode M, defined as the location of the maximum of the smoothed distribution curve, was also determined.

The primary results of the calculations are in the following given in terms of the parameters A_{0}, M, μ and μ_{2}.

METHOD OF CALCULATION

In the present calculations the characteristic parameters of column operation were varied in order to determine their effect on the chromatographic process.

From the form of eqns. (x) and (2) it follows that not all parameters need be varied independently. The following transformations are seen to leave the equations unchanged:

$$
\begin{equation*}
\left(c, \frac{a}{V_{1}}\right) \rightarrow\left(a c, \frac{\mathrm{I}}{V_{1}}\right) \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& \left(c, a f, k_{1}\right) \rightarrow\left(\frac{c}{a}, f, a k_{1}\right) \tag{9}\\
& \left(a t, k_{1}, k_{2}, D_{1}, v\right) \rightarrow\left(t, a k_{1}, a k_{2}, a D_{1}, a v\right) \tag{10}
\end{align*}
$$

where a is an arbitrary constant.
Each of these transformations makes it possible to change the value of one of the parameters via corresponding changes in some other parameters. In the calculations therefore only the parameters c, D_{1}, k_{1} and k_{2} were varied, the others being kept constant and, when not otherwise stated, had the values:

$$
\begin{align*}
& v=0.01\left(\mathrm{~cm} \mathrm{sec}^{-1}\right) \tag{II}\\
& V_{1}=0.004(\mathrm{~cm}) \tag{12}\\
& t=100 \tag{13}\\
& \tau=5(\mathrm{sec}) \tag{I4}
\end{align*}
$$

The value of V_{1} was chosen to represent a column filling consisting of tightly packed spherical beads with a radius of approximately 0.01 cm . The value of τ may be fixed arbitrarily, but is related to the values of other variables by formula (IO). (D_{1}, k_{1} and k_{2} enter the calculations in form of the combined parameters $\alpha=2 D_{1} / \tau v^{2}$, $\tau / m k_{1}$ and $\tau / m k_{\mathfrak{g}}$). The value in (I4) may be used for convenience, as it provides realistic operational conditions for the column. It gives a cell width $\tau v=0.05 \mathrm{~cm}$.

All the matrixes were of the order $n=200$ and in all cases the value $n=5$ was used.

The calculations were carried out with the following initial conditions:

$$
\begin{align*}
& f^{0}{ }_{i 1}=\left\{\begin{aligned}
100 \text { for } i & =1 \\
0 \text { for } i & =2, \ldots, 200
\end{aligned}\right. \tag{土5}\\
& f_{1 j}=\left\{\begin{array}{l}
\text { 100 for } j=1, \ldots, n \\
0 \text { for } j=n+1, \ldots, 200
\end{array}\right. \tag{I6}\\
& f m_{0 j}=\left\{\begin{array}{c}
100 \text { for } j=\mathbf{x}, \ldots, n-\mathbf{I} \\
\text { ofor } j=n, \ldots, \mathbf{1 9 9}
\end{array}\right. \tag{7}\\
& h^{m_{i 0}}=\quad 0 \text { for } i=\mathbf{1}, \ldots, 200 \tag{土8}
\end{align*}
$$

In the case of isolated peaks in general the value $n=5$ was used, though for matrixes $22,24,25$ and 26 the value of n was $2,50,15$ and 20 , respectively. In the case of frontal analysis, for matrixes 2 I and 22, the value of n was 200.

The values of the characteristic parameters for the different matrixes are listed in Table I, and the primary results of the calculations are given in Tables II and IV.

In Table II, the matrixes may be grouped together according to the following scheme. In I, 2 and 3 the longitudinal diffusion coefficient is varied; in 4, 5, 2 and 6 the equilibrium constant is varied; in $7,8,9,10,2$ and $I I$ the concentration of the sorbent is varied; in $12,13,14,2,15$ and 16 the reaction rate is varied and in $17,18,2$ and 19 the feed concentration is varied. Finally, the matrixes 20 and 21 represent frontal

TABLE I
VALUES OF CHARACTERISTIC PARAMJTERS

Matrix No.	f	c	α	$r / m h_{1}$	T/m $/ \mathrm{l}$
I	100	0.4	0	0.005	0.05
2	100	0.4	O.I.	0.005	0.05
3	100	0.4	0.2	0.005	0.05
4	100	0.4	O.I	0.005	0.001
5	100	0.4	O.I	0.005	0.005
6	100	0.4	O.I.	0.005	0.25
7	100	0	O.I	0.005	0.05
8	100	0.02	O.I	0.005	0.05
9	100	O. I	0.1	0.005	0.05
10	100	0.2	O.I	0.005	0.05
I I	100	0.7	O.I	0.005	0.05
12	100	0.4	O.I	0.0005	0.005
13	100	0.4	O.I	0.001	0.01
14	100	0.4	O.I.	0.002	0.02
15	100	0.4	O.I	0.007	0.07
IG	IOO	0.4	O.I	0.009	0.09
17	20	0.4	O.I	0.005	0.05
18	50	0.4	O. I	0.005	0.05
19	400	0.4	O.I	0.005	0.05
20	100	0.4	0	0.0005	0.005
21	IOO	0.4	0.8	0.0005	0.005
22	100	0.4	0.08	0.005	0.05
23	100	0.4	0.2	0.002	0.02
24	100	0.4	0.4	0.001	0.01
25	100	0.4	0.6	0.00067	0.0067
26	100	0.4	0.8	0.0005	0.005

analysis with constant feed concentration, and there the longitudinal diffusion coefficient is varied.

RESULTS AND DISCUSSION

We will first consider isolated peaks. From the results in Table II it appears that in sorption chromatography steady state conditions are approached much more slowly than in partition chromatography. Therefore, under ordinary conditions, plots of μ and μ_{2} against time yield curved lines and hence the peak velocity v and spreading coefficient D are variable quantities. However, if the sorption isotherm has a finite slope at the origin, as is the case with Langmuir isotherm, the conditions of partition chromatography are approached as a limit. We will therefore first study the asymptotic behaviour of isolated peaks.

In a column of infinite length the spreading of a peak will cause the concentration in the peak to decrease indefinitely. Thus, as f tends to zero eqn. (2) takes the asymptotic form:

$$
\begin{equation*}
\frac{\partial h}{\partial t}=k_{1} c f-k_{2} h=-k_{2}\left(h-\frac{k_{1} c}{k_{2}} f\right) \tag{土9}
\end{equation*}
$$

Eqns. (I) and (I9) may be compared with those of partition chromatography, eqns. (I) and (2) in ref. 6 . To make a direct comparison possible we delete the term for
longitudinal diffusion in the stationary phase in the latter equations and put $V_{2}=1$. Then, by identity:

$$
\begin{equation*}
k_{2}=2 D_{2} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{k_{1} c}{k_{2}}=\gamma \tag{21}
\end{equation*}
$$

It then becomes possible to use the exact expressions for peak velocity and peak spreading, which were derived for the partition case, eqns. (36) and (39) in ref. 6. With proper values of the parameters ($V_{2}=\mathrm{I}$ and $D_{2}=0$ in the last term in the expression for D) we get:

$$
\begin{equation*}
\nu=\frac{\mathrm{I}}{\mathrm{I}+\frac{k_{1} c}{k_{\mathbf{2}} V_{1}}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
D=\frac{D_{1}}{\mathrm{I}+\frac{k_{1} c}{k_{2} V_{1}}}+\frac{k_{1} c v^{2}}{k_{2}^{2} V_{1}\left(\mathrm{I}+\frac{h_{1} c}{k_{2} V_{1}}\right)^{3}}=D_{1} v+\frac{v^{2} v^{2}(\mathrm{I}-v)}{k_{2}} \tag{23}
\end{equation*}
$$

These relations are amenable to simple physical interpretations. Thus, ν is equal to the fraction of solute in the mobile phase, and is independent of the rate of the sorption reaction (k_{1} / k_{2} is the equilibrium constant). D, on the other hand, is strongly dependent on the reaction rate. For an infinitely fast reaction the chromatographic dispersion vanishes, and the spreading is solely due to longitudinal diffusion in the mobile phase. The spreading coefficient then equals the diffusion coefficient times the fraction of solute in the mobile phase.

In order to show the deviation from asymptotic conditions for different column characteristics, v and D values were calculated for the matrixes in Table II according to eqns. (22) and (23), and from finite differences of the data in Table II, according to:

$$
\begin{equation*}
v=\frac{\Delta \mu}{\Delta t}, D=1 / 2 \frac{\Delta \mu_{2}}{\Delta t} \tag{24}
\end{equation*}
$$

The results for the mobile phase are listed in Table III. They are expressed in local units (τ and $\nu \tau$ as units of time and length respectively) and refer to the midpoints of the respective intervals.

The data in Table III show that v generally is rather close to its asymptotic value, whereas for D pronounced deviations occur. The deviations are small if the initial concentration is low, as in matrixes 17 and I8. Also, in the case of large D values the asymptotic conditions are rapidly approached. Then the peak spreads out rapidly and its concentration falls to a level where asymptotic conditions prevail. This is the case in matrixes 12,13 and 14 where the reaction rate is low and hence D is large. In cases when the concentration in a peak remains high, usually pronounced deviations from asymptotic conditions occur. This happens when the column is overloaded, matrix 19, and also when the reaction rate is high, matrixes 15 and 16 .
TABLE II
primary results of the calculations

Matrix No.	Column No.								
	Mobile phase					Stationary phase			
	10	50	100	150	200	10	50	100	200
I	126.111	68.588	61.152	58.095	56.317	1.4956	1.7257	1.7554	1.7747
	4.8	12.60	19.81	26.45	32.65	4.6	12.54	19.75	32.61
	4.0224	10.600	17.034	22.989	28.708	3.6475	10.286	16.714	28.380
	1.6984	9.7520	18.301	26.474	34-470	2.3889	15.446	20.652	37.722
2	123.498	67.282	60.086	57.133	55.424	1.4952	1.7110	1.7397	1.7583
	4.7	12.36	19.54	25.98	32.18	4.5	12.25	19.50	32.12
	3.9773	10.508	16.892	22.806	28.491	3.6522	10.227	16.602	28.190
	ェ. 6973	9.6061	18.594	26.995	35.218	$2.44{ }^{8} 4$	11.579	21.003	38.552
3	120.103	65.994	59.038	56.192	54.547	1.4980	1. 6963	1.7239	1.7418
	4.6	12.07	19.17	25.63	31.74	4.4	11.98	19.10	31.70
	3.9362	10.420	16.755	22.630	28.280	3.6648	10.17	16.492	28.005
	1.7265	9.9579	18.932	${ }^{27.57}{ }^{8}$	36.053	2.5214	14.728	21.397	39.451
4	9.6332	2.4568	2.0591	1.8304	1.6769	1.9613	1.9882	1.9879	1.9866
	4.9	4.1			4.5				
	$4 \cdot 4{ }^{815}$	3.6217	3.8065	3.9852	4.1539	3.0292	3.2932	3.5202	3.8943
	I.2III	I. 9654	2.3040	2.5824	2.8276	2.2075	2.7091	3.0882	3.6873
5	31.436	13.033	10.493	9.4131	8.7810	1.8723	1.9368	1.9427	1. 9465
	4.6	5.71	7.14-	8.47	9.55	3.5	5.50	6.87	9.34
	3.7826	4.8012	5.984^{2}	6.9985	7.9256	3.1137	4.5336	5.7071	7.6316
	1.685I	3.5698	5.1717	6.594^{8}	7.9360	2.2635	4.554^{2}	6.4001	9.5094
6	${ }_{23} 8.848$	192.4IS	183.839	180.226	${ }_{17} 8.117$	1.0265	1.2103	1. 2446	1. 2675
	5.2	23.51	43.43	62.54	81.22	5.2	23.52	43.42	81.22
	4.8280	21.532	40.470	58.845	76.939	4.7332	21.362	40.294	76.759
	2.0536	15.66_{4}	32.885	50.054	67.224	2.7010	17.416	35.405	70.335

	$\underset{\substack{\vec{x}} \frac{x}{x}}{\substack{E \\ \vdots}}$		$\begin{aligned} & 0 \\ & x+\frac{1}{n} \vec{x} \\ & -x=5 \end{aligned}$		$\underset{\sim}{N}$		$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \underset{\sim}{2} \\ & -i \end{aligned}$	
$\begin{aligned} & \frac{1}{2} \\ & \frac{\infty}{2} \\ & \cdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								
			$\underset{\sim}{0} \underset{\sim}{0} \underset{\sim}{5} \frac{9}{7}$					
							$\underset{\sim}{8} \times \underset{\sim}{\circ}$	｜
∞	2	\bigcirc	$=$	\because	m	\pm	\cdots	

TABLE II (continued)

Matrix No.	Column No.								
	Mobile phase					Stationayy phase			
	10	50	100	150	200	Io	50	100	200
16	129.716	67.868	60.37 I	57.331	55.58I	I. 4693	1.7087	1.7385	I. 7577
	4.7	12.65	19.85	26.46	32.63	4.5	12.64	19.84	32.63
	3.9775	10.670	17.095	23.032	28.735	3.6988	10.401	16.816	$23.44{ }^{6}$
	1.5544	9.6618	18.334	26.645	34.767	2.3597	II. 444	20.779	38.142
17	59.979	50.061	48.469	47.804	47.415	1.7729	1. 7804	1.7861	1.7903
	1.8	6.24	11.39	16.37	21.29	I. 7	6.21	IL. ${ }^{6}$	21.26
	2.0412	6.3548	II. 326	16.188	20.998	2.065	6.343	11.307	20.974
	0.8577	4.8799	9.3704	14.842	19.802	0.9468	5.140 Or	10.250	20.349
18	8 fr .953	57.285	53-381	51.756	50.8 ro	1.6695	1.7512	1.7665	1.7768
	2.8	8.60	14.08	20.17	25.63	2.7	8.55	14.54	25.59
	2.7495	7.9634	13.531	18.339	24.020	2.7135	7.8897	13.446	23.926
	1.1320	6.1853	12.177	LS.068	23.901	1.4214	6.9305	13.235	25.392
19	318.544	107.617	84.652	76.372		0.7083	1. 5496	1.6414	
	7.0	29.2	4 L .3	51.1	60.3		29.4	41.5	60.5
	6.6133	21.789	31.219	39.316	46.792	$5 \cdot 3^{82}$	19.744	29.339	44.953
	1.8307	43.651	78.864	109.377	137.944	${ }_{5} 5.5{ }^{8} 42$	54.906	93.526.	157.288
20	556.007	2597.37	5214.34	7833.34	10452.4	I. 77597	9.61053	19.1426	38.1905
21	560.996	2579.0 I	5193.57	7812.39	10431.4	1.88860	9.82940	19.3712	38.4197

However, it should be noted that the use of finite differences in the calculations involves an approximation which becomes less satisfactory at high reaction rates (see Appendix). The deviations in the latter case are therefore exaggerated.

TABLE III
values of relative peak velocities and spreading coefficients
For each matrix ν is given in the first row and D in the second.

Matvix No.	Time (in units of τ)				
	30	75	I25	175	∞
I	$\begin{aligned} & 0.1644 \\ & 0.1006 \end{aligned}$	$\begin{aligned} & 0.1287 \\ & 0.0855 \end{aligned}$	$\begin{aligned} & 0.1191 \\ & 0.0817 \end{aligned}$	$\begin{aligned} & 0.1144 \\ & 0.0799 \end{aligned}$	$\begin{aligned} & 0.09091 \\ & 0.03005 \end{aligned}$
2	$\begin{aligned} & 0.1633 \\ & 0.0909 \end{aligned}$	$\begin{aligned} & 0.1277 \\ & 0.0899 \end{aligned}$	$\begin{aligned} & 0.1183 \\ & 0.0840 \end{aligned}$	$\begin{aligned} & 0.1137 \\ & 0.0822 \end{aligned}$	$\begin{aligned} & 0.09091 \\ & 0.03460 \end{aligned}$
3	$\begin{aligned} & 0.1621 \\ & 0.1029 \end{aligned}$	$\begin{aligned} & 0.1267 \\ & 0.0897 \end{aligned}$	$\begin{aligned} & 0.1175 \\ & 0.0865 \end{aligned}$	$\begin{aligned} & 0.1130 \\ & 0.0848 \end{aligned}$	$\begin{aligned} & 0.09091 \\ & 0.04114 \end{aligned}$
4		$\begin{aligned} & 0.003695 \\ & 0.00339 \end{aligned}$	$\begin{aligned} & 0.003576 \\ & 0.00278 \end{aligned}$	$\begin{aligned} & 0.003373 \\ & 0.00245 \end{aligned}$	0.001996 0.000895
5	$\begin{aligned} & 0.02546 \\ & 0.01884 \end{aligned}$	$\begin{aligned} & 0.02366 \\ & 0.01752 \end{aligned}$	$\begin{aligned} & 0.02029 \\ & 0.01423 \end{aligned}$	$\begin{aligned} & 0.01854 \\ & 0.01342 \end{aligned}$	$\begin{aligned} & 0.009901 \\ & 0.004378 \end{aligned}$
6	$\begin{aligned} & 0.4176 \\ & 0.1701 \end{aligned}$	$\begin{aligned} & 0.3788 \\ & 0.1722 \end{aligned}$	$\begin{aligned} & 0.3^{675} \\ & 0.1717 \end{aligned}$	$\begin{aligned} & 0.3619 \\ & 0.1717 \end{aligned}$	$\begin{aligned} & 0.3333 \\ & 0.07592 \end{aligned}$
7	$\begin{aligned} & 1.0000 \\ & 0.05000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.05000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.04999 \end{aligned}$		$\begin{aligned} & 1.0000 \\ & 0.05000 \end{aligned}$
S	$\begin{aligned} & 0.9052 \\ & 0.3102 \end{aligned}$	$\begin{aligned} & 0.8500 \\ & 0.6705 \end{aligned}$	$\begin{aligned} & 0.8093 \\ & 0.8925 \end{aligned}$	$\begin{aligned} & 0.784 \mathrm{I} \\ & 0.9865 \end{aligned}$	$\begin{aligned} & 0.6667 \\ & 0.6260 \end{aligned}$
9	$\begin{aligned} & 0.5393 \\ & 0.5342 \end{aligned}$	$\begin{aligned} & 0.4010 \\ & 0.5468 \end{aligned}$	$\begin{aligned} & 0.3702 \\ & 0.5288 \end{aligned}$	$\begin{aligned} & 0.3557 \\ & 0.5201 \end{aligned}$	$\begin{aligned} & 0.2857 \\ & 0.2476 \end{aligned}$
10	$\begin{aligned} & 0.3147 \\ & 0.2787 \end{aligned}$	$\begin{aligned} & 0.2360 \\ & 0.2367 \end{aligned}$	$\begin{aligned} & 0.2182 \\ & 0.2266 \end{aligned}$	$\begin{aligned} & 0.2096 \\ & 0.22 .18 \end{aligned}$	$\begin{aligned} & 0.1667 \\ & 0.1009 \end{aligned}$
I I	$\begin{aligned} & 0.09405 \\ & 0.0448 \mathrm{I} \end{aligned}$	$\begin{aligned} & 0.07384 \\ & 0.04033 \end{aligned}$	$\begin{aligned} & 0.06863 \\ & 0.03915 \end{aligned}$	$\begin{aligned} & 0.06613 \\ & 0.03882 \end{aligned}$	$\begin{aligned} & 0.05405 \\ & 0.01376 \end{aligned}$
12	$\begin{aligned} & 0.1526 \\ & 0.5058 \end{aligned}$	$\begin{aligned} & 0.1064 \\ & 0.3312 \end{aligned}$	$\begin{aligned} & 0.1032 \\ & 0.3240 \end{aligned}$	$\begin{aligned} & 0.1013 \\ & 0.3203 \end{aligned}$	$\begin{aligned} & 0.09091 \\ & 0.3051 \end{aligned}$
13	$\begin{aligned} & 0.1270 \\ & 0.2332 \end{aligned}$	$\begin{aligned} & 0.1136 \\ & 0.1800 \end{aligned}$	$\begin{aligned} & 0.1081 \\ & 0.1751 \end{aligned}$	$\begin{aligned} & 0.1053 \\ & 0.1726 \end{aligned}$	$\begin{aligned} & 0.09091 \\ & 0.1548 \end{aligned}$
14	$\begin{aligned} & 0.1437 \\ & 0.1100 \end{aligned}$	$\begin{aligned} & 0.1210 \\ & 0.1299 \end{aligned}$	$\begin{aligned} & \text { O.II } 35 \\ & \text { o. Iogx } \end{aligned}$	$\begin{aligned} & 0.1098 \\ & 0.1073 \end{aligned}$	$\begin{aligned} & 0.09091 \\ & 0.07968 \end{aligned}$
15	$\begin{aligned} & 0.1664 \\ & 0.0808 \end{aligned}$	$\begin{aligned} & 0.1284 \\ & 0.0866 \end{aligned}$	$\begin{aligned} & 0.1187 \\ & 0.0331 \end{aligned}$	$\begin{aligned} & 0.1140 \\ & 0.0813 \end{aligned}$	$\begin{aligned} & 0.0909 \mathrm{r} \\ & 0.02600 \end{aligned}$
16	$\begin{aligned} & \text { O.1673 } \\ & \text { O.IO13 } \end{aligned}$	$\begin{aligned} & 0.1285 \\ & 0.0867 \end{aligned}$	$\begin{aligned} & 0.1188 \\ & 0.0831 \end{aligned}$	$\begin{aligned} & 0.1140 \\ & 0.0812 \end{aligned}$	0.09091 0.02124
17	$\begin{aligned} & 0.1078 \\ & 0.0503 \end{aligned}$	$\begin{aligned} & 0.0994 \\ & 0.0499 \end{aligned}$	$\begin{aligned} & 0.0973 \\ & 0.0497 \end{aligned}$	$\begin{aligned} & 0.0962 \\ & 0.0496 \end{aligned}$	$\begin{aligned} & 0.0909 \mathrm{I} \\ & 0.03460 \end{aligned}$
18	$\begin{aligned} & 0.1303 \\ & 0.0632 \end{aligned}$	$\begin{aligned} & 0.1 \text { I I } 4 \\ & 0.0599 \end{aligned}$	$\begin{aligned} & 0.1062 \\ & 0.0589 \end{aligned}$	$\begin{aligned} & 0.1036 \\ & 0.0583 \end{aligned}$	$\begin{aligned} & 0.09091 \\ & 0.03460 \end{aligned}$
19	$\begin{aligned} & 0.3764 \\ & 0.5228 \end{aligned}$	$\begin{aligned} & 0.1886 \\ & 0.3521 \end{aligned}$	$\begin{aligned} & 0.1619 \\ & 0.3051 \end{aligned}$	$\begin{aligned} & 0.1495 \\ & 0.2857 \end{aligned}$	$\begin{aligned} & 0.09091 \\ & 0.03460 \end{aligned}$

Peak asymmetry

The form of the concentration peaks was found to be rather similar in all cases studied. From the data in Table II it appears that generally $\mu<M$. Thus, the peaks exhibit negative skewness (according to Pearson's measure $S=(\mu-M) / V \mu_{2}$). This behaviour can be explained as an effect of the nonlinear sorption isotherm, which has the tendency to compress the leading boundary of a peak. This effect is reduced when asymptotic conditions are approached. It is realized from eqns. (22) and (23) that in the limit of partition chromatography the operational conditions are symmetric, as the equations are invariant under the reversal of the velocity of the mobile phase. Under these conditions an originally symmetric peak will remain symmetric. Some typical peaks are reproduced in Figs. I, 2 and 3. In Fig. I the peaks both in the mobile and stationary phases are shown, whereas in Figs. 2 and 3 the variation of shape with time is shown.

Convergence of the numerical solutions

In order to investigate the dependence of the numerical solutions on the size of the finite differences, some calculations were carried out in which the number of cells for a given length of column was varied. Thus, in the matrixes 22, 23, 24, 25 and 26, the initial peak is confined to $2,5,10,15$ and 20 cells, respectively, and the operational conditions of the corresponding chromatographic columns are identical if τ is assigned the values io, $4,2,4 / 3$ and I sec, respectively. The results for the mobile phase are listed in Table IV in the form of $\tau \mu$ and $\tau^{2} \mu_{2}$ values for two columns of each matrix,

TABLE IV
CONVEIRGENCE OF THE NUMERICAL SOLUTIONS

Matrix No.	$\tau(s c c)$	Column No.	$\tau \mu$	$\tau^{2} \mu_{2}$	ν	D
22	Io	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 28.336 \\ & 41.665 \end{aligned}$	$\begin{aligned} & 126.952 \\ & 244.283 \end{aligned}$	0.1333	0.5867
23	4	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & 26.834 \\ & 40.308 \end{aligned}$	$\begin{aligned} & I I 5.947 \\ & 214.411 \end{aligned}$	0.1347	0.4923
24	2	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & 26.633 \\ & 40.092 \end{aligned}$	$\begin{aligned} & 116.946 \\ & 214.814 \end{aligned}$	0.134 ${ }^{6}$	0.4893
25	4/3	$\begin{array}{r} 75 \\ 150 \end{array}$	$\begin{aligned} & 26.595 \\ & 40.041 \end{aligned}$	$\begin{aligned} & 117.672 \\ & 215.939 \end{aligned}$	O. 1345	0.4913
26	I	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 26.583 \\ & 40.020 \end{aligned}$	$\begin{aligned} & 118.116 \\ & 216.689 \end{aligned}$	O. 1344	0.4929

representing the situations at the same time instances. It also contains ν and D values, calculated from the differences between the two sets of values according to eqn. (24). Finally, in Fig. 4 the concentration distributions for a peak, resulting from some of these matrixes, are compared. It may be concluded that the convergence of the numerical solutions is quite satisfactory.

Fig. 1. Concentration distribution in the mobile and stationary phases. Column $j=200$ of matrix No. 2.

Fig. 2. Concentration distribution in the mobile phase. Columns $j=100$ and $j=200$ of matrix No. 14.

Fig. 3. Concentration distribution in the mobile phase of an overloaded chromatographic column Columns $j=100$ and $j=200$ of matrix No. 19 .

Fig. 4. Concentration clistributions in the mobile phase resulting from calculations with finite differences of varying size. The curve represents column $j=200$ of matrix 26, filled circles column $j=100$ of matrix 24 and unfilled circles column $j=20$ of matrix 22.

Frontal analysis

We will next consider a column fed with a solution of constant concentration. This case is amenable to a straightforward analytical treatment and has been studied by earlier investigators ${ }^{4}, 5$. We will indicate here a more direct approach where longi-: tudinal diffusion is also taken into account. We start with eqns. (x) and (2) and investigate their solution for a stationary boundary. The existence of such a boundary is guaranteed by the nonlinearity of the sorption isotherm, which makes the movement of different points of the boundary a function of concentration.

Denoting the velocity of the stationary boundary by ω, we may determine it directly from the mass balance equation:

$$
\begin{equation*}
v t V_{1} f_{0}=\omega t V_{1} f_{0}+\omega t h_{c \nu} \tag{25}
\end{equation*}
$$

where f_{0} and h_{∞} refer to feed concentration and equilibrium concentration of f and h, respectively. From (25) and (2) (with $\partial h / \partial t=0$) we get:

$$
\begin{equation*}
\frac{\omega}{v}=\frac{t_{0}}{f_{0}+\frac{h_{\infty}}{V_{1}}}=\frac{\mathrm{I}}{\mathrm{I}+\frac{\mathrm{I}}{V_{1}} \frac{c}{t_{0}+\frac{k_{2}}{k_{1}}}} \tag{26}
\end{equation*}
$$

We will next switch to a new coordinate system, which follows the movement of the boundary. Thus we make the transformation:
$\xi=x-\omega t$
Eqns. (I) and (2) take the form:

$$
\begin{align*}
& \frac{\partial f}{\partial t}=D_{1} \frac{\partial^{2} f}{\partial \xi^{2}}-(v-\omega) \frac{\partial f}{\partial \xi}-\frac{1}{V_{1}}\left(\frac{\partial h_{2}}{\partial t}-\omega \frac{\partial h}{\partial \xi}\right) \tag{28}\\
& \frac{\partial h}{\partial t}-\omega \frac{\partial h_{2}}{\partial \xi}=k_{1} f(c-h)-k_{2} h_{2} \tag{29}
\end{align*}
$$

For a stationary boundary we have:

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\frac{\partial h}{\partial t}=0 \tag{30}
\end{equation*}
$$

Hence:
$D_{1} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} \xi^{2}}-(v-\omega) \frac{\mathrm{d} f}{\mathrm{~d} \xi}+\frac{\omega}{V_{1}} \frac{\mathrm{~d} / 2}{\mathrm{~d} \xi}=0$
$\omega \frac{\mathrm{d} h}{\mathrm{~d} \xi}+k_{1} f(c-h)-k_{2} h=0$
A first integration of (3r) gives:
$D_{1} \frac{\mathrm{~d} f}{\mathrm{~d} \xi}-(v-\omega) f+\frac{\omega}{V_{1}} h=K$

For an originally empty column we have:

$$
\begin{equation*}
t=h=\frac{\mathrm{d} t}{\mathrm{~d} \xi}=0 \tag{34}
\end{equation*}
$$

hence:

$$
x=0
$$

Thus, in this case the stationary boundary is determined by the following equations:

$$
\begin{align*}
& D_{1} \frac{\mathrm{~d} f}{\mathrm{c} \xi}-(v-\omega) t+\frac{\omega}{V_{1}} h=0 \tag{35}\\
& \omega \frac{\mathrm{~d} h}{\mathrm{~d} \xi}+k_{1} f(c-h)-k_{2} h=0 \tag{36}
\end{align*}
$$

These equations may be solved directly for $D_{1}=0$. Then according to (35):

$$
\begin{equation*}
f=\frac{\omega}{V_{1}(\nu-\omega)} \cdot h \tag{37}
\end{equation*}
$$

With (37) and (26), the integration of (36) yields:

$$
\begin{equation*}
\frac{t}{f_{0}}=\frac{\underline{I}}{\underline{I}+\mathrm{e}^{\frac{k_{1} f_{0}}{\omega} \xi}} \tag{38}
\end{equation*}
$$

The case $D_{1} \neq 0$ is more troublesome. However, owing to the small value of D_{1}, the solution for $D_{1}=0$ is a good first order approximation. It is therefore possible to solve the full equations by iteration, inserting the approximate solution into the non-linear term in eqn. (36). The resulting linear equations may then be solved by standard methods.

In Table II numerical solutions are given for the case $\alpha=0$ and $\alpha=0.8$. Choosing $\tau=\mathrm{I}$ sec. this gives $D_{1}=0$ and $D_{1}=4 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$ respectively. In Table II only the values of A_{0} are given. They determine the first moment μ of the boundary. We have:

$$
\begin{equation*}
\mu f_{1}=\sum_{i=1}^{\infty} i\left(f_{t}-f_{t+1}\right)=\sum_{i=1}^{\infty} i f_{t}-\sum_{i=1}^{\infty}(i+1) f_{i+1}+\sum_{i=1}^{\infty} f_{i+1}=\sum_{i=1}^{\infty} f_{i}=A_{0} \tag{39}
\end{equation*}
$$

Here f_{1} is the constant concentration in the plateau region. In the mobile phase we have $f_{1}=$ roo, hence $\mu=A_{0} /$ roo. From the data in Table II we see that the velocity of a stationary boundary is constant. It has exactly the value predicted by eqn. (26). In Fig. 5, the boundaries for the two cases are shown in detail. We see that in the case of non-vanishing longitudinal diffusion the boundary is not symmetrical. The effect of diffusion is seen to be rather small, however, and the translational velocity of the boundary remains unaffected.

Fig. 5. Concentration profiles in frontal analysis. Columns $j=200$ of matrixes Nos. 20 (line) and 2 (filled circles).

APPENDIX

Some aspects concerning the errors involved in the application of the finite difference method to chromatography are now considered. First, for the sake of generality, the recursion formulae in partition and sorption chromatography are reformulated on a common basis, and then take the form:

$$
\begin{align*}
& f_{i j}=f_{i j}+1 / 2 \propto\left(f_{t}-1, j-2 f_{i j}+f_{t}+1, j\right) \tag{40}\\
& f_{i}+1, j+1=f_{i j}-\beta \delta_{i j} \tag{4I}\\
& h_{i, j+1}=h_{i j}+\delta_{i j} \tag{42}
\end{align*}
$$

Here the term $\delta_{i f}$ represents the exchange of solute between the mobile and stationary phases in a cell, and is thus determined by the kinetics of the chromatographic process. The parameter β has the values $V_{\mathbf{2}} / V_{1}$ and I / V_{1} for partition and sorption chromatography respectively. In the case of partition chromatography we get according to eqns. (23), (24) in ref. 2 :

$$
\begin{equation*}
\beta \delta_{i j}=\eta\left(f \mathrm{o}_{i j}-\frac{\mathrm{I}}{\gamma} h_{t j}\right) \tag{43}
\end{equation*}
$$

(here $h_{t j}$ is the solute concentration in the stationary phase, but is designated $\gamma g_{t j}$ in ref. 2).

In sorption chromatography with Langmuir kinetics we get according to eqns. (土2)-(I6) in ref. I

$$
\begin{equation*}
\delta_{l j}=\delta^{1}{ }_{i j}+\delta^{2}{ }_{i j}+\ldots+\delta^{m_{i j}} \tag{44}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta^{k_{i j}}=\frac{\tau}{m}\left[k_{1} f^{k-1} 1_{i j}\left(c-h^{k-1_{i j}}\right)-k_{2} h^{k-1_{i j}}\right] \quad k=1,2, \ldots, m \tag{45}
\end{equation*}
$$

(here, by comparison to ref. x, the indices have been changed for convenience).
The object is now to establish the variation with time in the first and second moments of a concentration distribution and compare the results with exact formulae. Such formulae are available in partition chromatography and the treatment will therefore be restricted to this case only, the results also being valid asymptotically
for sorption chromatography. We will consider isolated pealss and, in the formulae below, let all summation limits refer to points on both sides of the peak, in regions of zero concentration. For the second moment at time $j+x$ we then get:

$$
\begin{array}{r}
A_{2, j+1}=\sum_{i} i^{2} f_{i, j+1}=\sum_{i}(i+\mathrm{I})^{2} f_{t+1, j+1}=(\mathrm{I}-\eta) \sum_{i}(i+1)^{2} f_{t j}+ \\
+\eta / \gamma \sum_{i}(i+1)^{2} h_{t j} \tag{46}
\end{array}
$$

To evaluate the first term on the right hand side we substitute for $f^{0}{ }_{t j}$ from eqn. (40) and use the identities:

$$
\begin{aligned}
& (i+1)^{2}=i^{2}+2 i+1 \\
& (i+1)^{2}=(i-1)^{2}+4(i-1)+4
\end{aligned}
$$

Then:

$$
\begin{equation*}
\cdot A_{2, j+1}=(1-\eta)\left(A_{2 j}+2 A_{1 j}+A_{0 j}+\alpha A_{0 j}\right)+\eta / \gamma \sum_{i}(i+1)^{2} h_{t j} \tag{47}
\end{equation*}
$$

Using the same procedure we get for the first moment:

$$
\begin{equation*}
A_{1, j+1}=(1-\eta)\left(A_{1 j}+A_{0 j}\right)+n / \gamma \sum_{i}(i+1) h_{i j} \tag{48}
\end{equation*}
$$

In general these expressions are dependent on the original concentration distributions ($f_{t_{0}}, h_{i_{0}}$) and hence become exceedingly complicated for high values of j. However, when the reaction rate is so high that equilibrium between the two phases in a cell is established in an equilibration step, this dependence disappears and the equations take simple forms. We may use eqns. (21) $-(24$) in ref. 2 and, as then :
$m=\infty$ in the expressions for η and ξ, we get
$\eta=\xi$, which implies:

$$
\begin{equation*}
f_{i}+1, j=\frac{I}{\gamma} h_{i j} \tag{49}
\end{equation*}
$$

Also, as the concentration in a phase is now constant, we use normalized distributions and put:

$$
\begin{equation*}
A_{0 j}=\mathbf{I} \tag{50}
\end{equation*}
$$

Inserting the last two equations into (47) and (48) we get:

$$
\begin{align*}
& A_{2, \jmath+1}=A_{2 \jmath}+(1-\eta)\left(2 A_{1 \jmath}+\mathbf{I}+\alpha\right) \tag{5I}\\
& A_{1, \jmath+1}=A_{1 \jmath}+1-\eta \tag{52}
\end{align*}
$$

For the variance we get:

$$
\begin{equation*}
\mu_{2, j+1}=A_{2, j+1}-A_{1, j+1}=\mu_{2},+\alpha(1-\eta)+\eta(1-\eta) \tag{53}
\end{equation*}
$$

We are now in the position to write down expressions for the peak velocity ν and spreading coefficient D. In local units they take the form:

$$
\begin{align*}
& v=A_{1}, j+1-A_{1} \jmath=\mathbf{I}-\eta \tag{54}\\
& D=1 / 2\left(\mu_{2, j}+1-\mu_{2} j\right)=1 / 2 \alpha(\mathbf{I}-\eta)+1 / 2 \eta(\mathbf{I}-\eta) \tag{55}
\end{align*}
$$

Substituting the values of α and η and comparing the formulae with eqns. (36) and (39) in ref. 6 we find that no error is involved in the expression for ν, and that in the expression for D the term representing longitudinal diffusion is exact, while the chromatographic dispersion is subject to the error $1 / 2 \eta(1-\eta)$.

This is strictly valid for an infinitely fast equilibration reaction and it is therefore of interest to consider the error at lower reaction rates. Although a general theoretical analysis of this problem is impracticable, some information may be obtained from the numerical data in this paper and in ref. 3. Thus, it appears that for steady state conditions the error in v always is very small and that the error in D generally decreases with decreasing reaction rate. This indicates that $1 / 2 \eta$ ($1-\eta$) represents the upper limit of the error of the chromatographic dispersion. Further the fact that no error is involved in the longitudinal diffusion is of great interest. If pure diffusion is considered, this implied that the finite difference method (Schmidt's formula, $c f$. ref. 7) leads to macroscopically correct results (with respect to $\mu_{2}, c f$. ref. 8). This result may be generalized and, with the help of the formula in ref. 8, it may be shown that the result is correct even when the diffusion coefficient is a linear function of concentration.

ACKNOWLEDGEMENTS

The author expresses his gratitude to Mr. T. Höglung, who carried out the programming and supervised the computations. Financial support from the Swedish Office of Organization and Management and from the Swedish Natural Science Research Council is gratefully acknowledged.

SUMMARY

The operation of a chromatographic column with a sorption reaction following Langmuir kinetics has been simulated by numerical calculations on a digital computer. The operational conditions of the column are varied within wide limits and the results are related to theoretical considerations. It is shown that in sorption chromatography the conditions of partition chromatography are asymptotically approached and the process may then be described by the exact analytical formulae of linear partition chromatography. The errors in the finite difference method are discussed and evaluated for some special cases.

REFERENCES

[^0]4 E. Glueckauf and J. I. Coates, J. Chem. Soc., (1947) 13 I 5.
5 L. G. Sillen, Arkiv Kemi, 2 (1950) 477 and 499.
6 H. Vinis, J. Chromatog., 20 (1965) 305.
7 J. Crank, Tho Mathematics of Difusion, Clarenclon, Oxford, 1956.
8 H. Vinis, Nature, 205 (1965) 73.

[^0]: I H. Vince, J. Chromatog., 20 (1965) 496.
 2 H. Vink, J. Chromalog., I5 (1964) 4 SB.
 3 H. Vink, J. Chromalog., 18 (1965) 25.
 J. Chromatog., 24 (1966) 39-55

